
Exploring Rejection Strategies for Zero-Shot Classification

Zero-shot learning is a challenging task that requires models to classify samples that belong
to classes unseen during training. State-of-the-art contrastive learning models such as CLIP
have shown impressive performance in image-text classification, but they still struggle with
handling out-of-distribution samples.

In this project, we aim to explore state-of-the-art rejection strategies in the zero-shot setting
for popular models such as CLIP. The objective is to investigate different approaches to
reject or abstain from making a classification decision when the model is uncertain or when
the input is out-of-distribution. We will first review existing rejection strategies such as
uncertainty-based, entropy-based, and margin-based methods. Then, we will experiment
with these strategies and compare their performance on standard zero-shot classification
benchmarks. Finally, we will propose novel ideas for rejection strategies and evaluate their
effectiveness. The ultimate goal is to improve the robustness and reliability of zero-shot
classification models, making them more suitable for real-world applications.
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